Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Phytomed Plus ; 2(2): 100252, 2022 May.
Article in English | MEDLINE | ID: covidwho-1783697

ABSTRACT

Purpose Pulmonary fibrosis caused by COVID-19 pneumonia is a serious complication of COVID-19 infection, there is a lack of effective treatment methods clinically. This article explored the mechanism of action of berberine in the treatment of COVID-19 (Corona Virus Disease 2019, COVID-19) pneumonia pulmonary fibrosis with the help of the network pharmacology and molecular docking. Methods We predicted the role of berberine protein targets with the Pharmmapper database and the 3D structure of berberine in the Pubchem database. And GeneCards database was used in order to search disease target genes and screen common target genes. Then we used STRING web to construct PPI interaction network of common target protein. The common target genes were analyzed by GO and KEGG by DAVID database. The disease-core target gene-drug network was established and molecular docking was used for prediction. We also analyzed the binding free energy and simulates molecular dynamics of complexes. Results Berberine had 250 gene targets, COVID-19 pneumonia pulmonary fibrosis had 191 gene targets, the intersection of which was 23 in common gene targets. Molecular docking showed that berberine was associated with CCl2, IL-6, STAT3 and TNF-α. GO and KEGG analysis reveals that berberine mainly plays a vital role by the signaling pathways of influenza, inflammation and immune response. Conclusion Berberine acts on TNF-α, STAT3, IL-6, CCL2 and other targets to inhibit inflammation and the activation of fibrocytes to achieve the purpose of treating COVID-19 pneumonia pulmonary fibrosis.

2.
EClinicalMedicine ; 39: 101069, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1499821

ABSTRACT

BACKGROUND: SARS-CoV-2 infection is associated with thrombotic and microvascular complications. The cause of coagulopathy in the disease is incompletely understood. METHODS: A single-center cross-sectional study including 66 adult COVID-19 patients (40 moderate, 26 severe disease), and 9 controls, performed between 04/2020 and 10/2020. Markers of coagulation, endothelial cell function [angiopoietin-1,-2, P-selectin, von Willebrand Factor Antigen (WF:Ag), von Willebrand Factor Ristocetin Cofactor, ADAMTS13, thrombomodulin, soluble Endothelial cell Protein C Receptor (sEPCR), Tissue Factor Pathway Inhibitor], neutrophil activation (elastase, citrullinated histones) and fibrinolysis (tissue-type plasminogen activator, plasminogen activator inhibitor-1) were evaluated using ELISA. Tissue Factor (TF) was estimated by antithrombin-FVIIa complex (AT/FVIIa) and microparticles-TF (MP-TF). We correlated each marker and determined its association with severity. Expression of pulmonary TF, thrombomodulin and EPCR was determined by immunohistochemistry in 9 autopsies. FINDINGS: Comorbidities were frequent in both groups, with older age associated with severe disease. All patients were on prophylactic anticoagulants. Three patients (4.5%) developed pulmonary embolism. Mortality was 7.5%. Patients presented with mild alterations in the coagulogram (compensated state). Biomarkers of endothelial cell, neutrophil activation and fibrinolysis were elevated in severe vs moderate disease; AT/FVIIa and MP-TF levels were higher in severe patients. Logistic regression revealed an association of D-dimers, angiopoietin-1, vWF:Ag, thrombomodulin, white blood cells, absolute neutrophil count (ANC) and hemoglobin levels with severity, with ANC and vWF:Ag identified as independent factors. Notably, postmortem specimens demonstrated epithelial expression of TF in the lung of fatal COVID-19 cases with loss of thrombomodulin staining, implying in a shift towards a procoagulant state. INTERPRETATION: Coagulation dysregulation has multifactorial etiology in SARS-Cov-2 infection. Upregulation of pulmonary TF with loss of thrombomodulin emerge as a potential link to immunothrombosis, and therapeutic targets in the disease. FUNDING: John Hopkins University School of Medicine.

SELECTION OF CITATIONS
SEARCH DETAIL